Cross Diffusion Preventing Blow-Up in the Two-Dimensional Keller-Segel Model
نویسندگان
چکیده
Abstract. A (Patlak-) Keller-Segel model in two space dimensions with an additional crossdiffusion term in the equation for the chemical signal is analyzed. The main feature of this model is that there exists a new entropy functional, yielding gradient estimates for the cell density and chemical substance. This allows one to prove, for arbitrarily small cross diffusion, the global existence of weak solutions to the parabolic-parabolic model as well as the global existence of bounded weak solutions to the parabolic-elliptic model, thus preventing blow up of the cell density. Furthermore, the long-time decay of the solutions to the parabolic-elliptic model is shown and finite-element simulations are presented illustrating the influence of the regularizing cross-diffusion term.
منابع مشابه
Volume effects in the Keller-Segel model: energy estimates preventing blow-up
We obtain a priori estimates for the classical chemotaxis model of Patlak, Keller and Segel when a nonlinear diffusion or a nonlinear chemosensitivity is considered accounting for the finite size of the cells. We will show how entropy estimates give natural conditions on the nonlinearities implying the absence of blow-up for the solutions.
متن کاملThe one-dimensional Keller-Segel model with fractional diffusion of cells
We investigate the one-dimensional Keller-Segel model where the diffusion is replaced by a non-local operator, namely the fractional diffusion with exponent 0 < α ≤ 2. We prove some features related to the classical two-dimensional Keller-Segel system: blow-up may or may not occur depending on the initial data. More precisely a singularity appears in finite time when α < 1 and the initial confi...
متن کاملBlow up of solutions to generalized Keller–Segel model
The existence and nonexistence of global in time solutions is studied for a class of equations generalizing the chemotaxis model of Keller and Segel. These equations involve Lévy diffusion operators and general potential type nonlinear terms.
متن کاملNew Interior Penalty Discontinuous Galerkin Methods for the Keller-Segel Chemotaxis Model
We develop a family of new interior penalty discontinuous Galerkin methods for the Keller-Segel chemotaxis model. This model is described by a system of two nonlinear PDEs: a convection-diffusion equation for the cell density coupled with a reaction-diffusion equation for the chemoattractant concentration. It has been recently shown that the convective part of this system is of a mixed hyperbol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 43 شماره
صفحات -
تاریخ انتشار 2011